

STANDARD MACHINE ELEMENTS WORLDWIDE

Antivibranti ad elevate prestazioni - Caratteristiche e criteri per la scelta

Generalità

I sistemi antivibranti ad elevate prestazioni vengono utilizzati nel rispetto della normativa sulla sicurezza in tema di vibrazioni e rumore (DL 81/2008). L'impiego di questi sistemi permette di prevenire danni alle strutture, non compromettere il corretto funzionamento di macchinari sensibili, ridurre la generazione di rumore.

Caratteristiche

AVC:

- Elevata deflessione statica, bassa frequenza di risonanza ed elevato isolamento delle vibrazioni.
- Elevato fattore di smorzamento, adatto anche per macchine con sbilanciamenti.
- Utilizzabili a compressione, trazione e taglio.
- Idonei per applicazioni in cui è presente la possibilità di urti e shock.
- Struttura interamente in acciaio INOX, con conseguente resistenza alla fiamma, alle alte temperature e alla corrosione.

AVM:

- · Elevata deflessione statica rispetto all'altezza, bassa frequenza di risonanza ed elevato isolamento delle vibrazioni.
- Non hanno un fattore di smorzamento, quindi non sono adatti per macchine con sbilanciamenti.
- · Utilizzabile a compressione.
- Per temperature inferiori ai +5°C è necessario utilizzare molle in acciaio INOX (esecuzione speciale a richiesta).

AVF:

- Carichi elevati con ingombro ridotto.
- Caratterizzati da una rigidezza non lineare: nel primo tratto della curva si ha un isolamento vibrazionale, nel tratto successivo si ha una stabilizzazione del sistema per eventuali sovraccarichi.
- Struttura interamente in acciaio INOX, con consequente resistenza alla fiamma, alle alte temperature e alla corrosione.

AVG:

- Buona deflessione statica, bassa freguenza di risonanza e buon isolamento delle vibrazioni.
- Elevato fattore di smorzamento, adatto anche per macchine con sbilanciamenti.
- · Utilizzabile a compressione e trazione.
- Elevato grado di sicurezza: anche in caso di combustione dei resilienti in gomma, il perno interno non si sfila dalla struttura e mantiene l'apparato sospeso in sicurezza.

Criteri di scelta

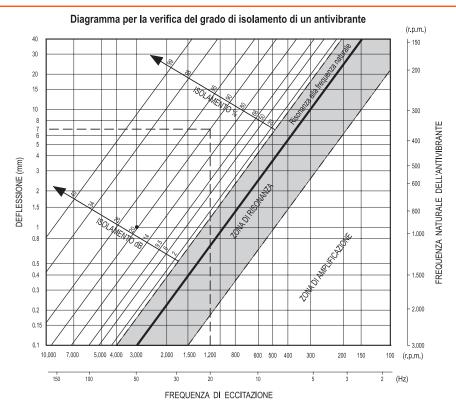
Analisi dei test statici per la scelta dell'antivibrante adeguato.

Dati necessari:

- Carico statico applicato ad ogni elemento antivibrante (agente su ciascuno dei punti d'appoggio)
- Frequenza disturbante da abbattere e percentuale di isolamento desiderata

Operazioni per la scelta dell'antivibrante:

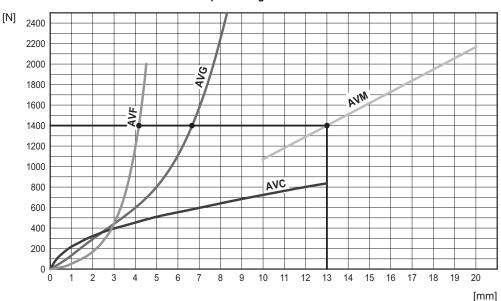
- Con riferimento al diagramma per la verifica del grado di isolamento, individuare la corrispondente deflessione statica richiesta per ottenere l'isolamento desiderato.
- Selezionare il prodotto che, a fronte del carico agente, presenti la deflessione statica necessaria.


Esempio:

Si consideri un'applicazione con le seguenti caratteristiche:

- Carico statico su ciascun supporto: 1400 N
- Frequenza da isolare: 1.200 Rpm = 20 Hz
- Isolamento richiesto: 90% a 20 Hz

Con il seguente diagramma per la verifica del grado di isolamento, riferito agli antivibranti privi di smorzamento ad es. AVM (in caso di smorzamento la percentuale di isolamento potrebbe variare, si consiglia di contattare il servizio tecnico Elesa) si ricava che è necessaria una deflessione statica di almeno 7 mm per avere un isolamento del 90% della frequenza di 20 Hz.



In riferimento al grafico sottostante i prodotti che intersecano la linea dei 1400 N sono: AVF, AVG, AVM. A fronte del carico 1400 N, le deflessioni statiche previste sono:

- AVF: 4 mm circa (< 7 mm) = isolamento 80% circa a 20 Hz
- AVG: 6,5 mm circa (< 7 mm) = isolamento 88% circa a 20 Hz
- AVM: 13 mm (> 7 mm) = isolamento 95% circa a 20 Hz

Ne risulta che il prodotto con l'isolamento migliore e quindi il più idoneo è AVM.

Esempio di diagrammi di carico

Diagramma semplificato per la verifica del grado di isolamento di un antivibrante

Defl.	f0v																
[mm]	[Hz]		Isolamento %														
1	15.9	-1%	-5%	-11%	-21%	-38%	-65%	-116%	-235%	-795%	-935%	-73%	32%	70%	89%	94%	96%
1.5	13.0	-2%	-7%	-17%	-36%	-70%	-145%	-416%	-1795%	-201%	-55%	27%	63%	82%	93%	96%	98%
2	11.3	-2%	-10%	-25%	-54%	-121%	-375%	-1239%	-148%	-29%	16%	54%	75%	87%	95%	97%	98%
2.5	10.1	-3%	-12%	-33%	-78%	-218%	-7569%	-191%	-33%	18%	43%	66%	81%	90%	96%	98%	99%
3	9.2	-3%	-15%	-42%	-111%	-463%	-442%	-63%	10%	40%	56%	73%	84%	92%	97%	98%	99%
4	8.0	-5%	-21%	-65%	-235%	-935%	-73%	13%	45%	61%	70%	81%	89%	94%	97%	99%	99%
5	7.1	-6%	-28%	-97%	-715%	-170%	-3%	41%	60%	71%	78%	85%	91%	95%	98%	99%	99%
6	6.5	-7%	-36%	-145%	-1795%	-55%	27%	55%	69%	77%	82%	88%	93%	96%	98%	99%	99%
7	6.0	-8%	-44%	-223%	-338%	-9%	43%	64%	74%	81%	85%	90%	94%	97%	99%	99%	99%
8	5.6	-10%	-54%	-375%	-148%	16%	54%	70%	78%	84%	87%	91%	95%	97%	99%	99%	Max
10	5.0	-12%	-78%	-7569%	-33%	43%	66%	77%	83%	87%	90%	93%	96%	98%	99%	99%	Max
12	4.6	-15%	-111%	-442%	10%	56%	73%	82%	87%	90%	92%	94%	97%	98%	99%	Max	Max
14	4.3	-18%	-159%	-162%	31%	65%	78%	85%	89%	91%	93%	95%	97%	98%	99%	Max	Max
16	4.0	-21%	-235%	-73%	45%	70%	81%	87%	90%	92%	94%	96%	97%	99%	99%	Max	Max
18	3.8	-25%	-375%	-29%	54%	75%	84%	88%	91%	93%	95%	96%	98%	99%	99%	Max	Max
20	3.6	-28%	-715%	-3%	60%	78%	85%	90%	92%	94%	95%	97%	98%	99%	99%	Max	Max
22	3.4	-32%	-2759%	15%	65%	80%	87%	91%	93%	95%	96%	97%	98%	99%	Max	Max	Max
25	3.2	-38%	-935%	32%	70%	83%	89%	92%	94%	95%	96%	97%	98%	99%	Max	Max	Max
30	2.9	-49%	-217%	49%	77%	86%	91%	93%	95%	96%	97%	98%	99%	99%	Max	Max	Max
32	2.8	-54%	-148%	54%	78%	87%	91%	94%	95%	96%	97%	98%	99%	99%	Max	Max	Max
35	2.7	-62%	-87%	59%	81%	88%	92%	94%	96%	97%	97%	98%	99%	99%	Max	Max	Max
40	2.5	-78%	-33%	66%	83%	90%	93%	95%	96%	97%	98%	98%	99%	99%	Max	Max	Max
45	2.4	-97%	-3%	71%	85%	91%	94%	96%	97%	97%	98%	99%	99%	99%	Max	Max	Max
50	2.3	-121%	16%	75%	87%	92%	95%	96%	97%	98%	98%	99%	99%	Max	Max	Max	Max
55	2.1	-152%	29%	77%	88%	93%	95%	96%	97%	98%	98%	99%	99%	Max	Max	Max	Max
60	2.1	-192%	39%	80%	90%	94%	96%	97%	98%	98%	98%	99%	99%	Max	Max	Max	Max
70	1.9	-330%	52%	83%	91%	95%	96%	97%	98%	98%	99%	99%	99%	Max	Max	Max	Max
80	1.8	-715%	60%	85%	92%	95%	97%	98%	98%	99%	99%	99%	99%	Max	Max	Max	Max
90	1.7	-7569%	66%	87%	93%	96%	97%	98%	98%	99%	99%	99%	Max	Max	Max	Max	Max
100	1.6	-935%	70%	89%	94%	96%	97%	98%	99%	99%	99%	99%	Max	Max	Max	Max	Max
150	1.3	-55%	82%	93%	96%	98%	98%	99%	99%	99%	99%	Max	Max	Max	Max	Max	Max
200	1.1	16%	87%	95%	97%	98%	99%	99%	99%	99%	Max	Max	Max	Max	Max	Max	Max
RF	PM	100	200	300	400	500	600	700	800	900	1000	1200	1500	2000	3000	4000	5000
[H	lz]	1.7	3.3	5.0	6.7	8.3	10.0	11.7	13.3	15.0	16.7	20.0	25.0	33.3	50.0	66.7	83.3

Antivibranti a cavo

Acciaio INOX

CAVO, BARRE E VITI

Acciaio INOX AISI 316.

ESECUZIONI STANDARD

Fori passanti filettati.

- AVC-4: il cavo si sviluppa per quattro spire.
- AVC-6: il cavo si sviluppa per sei spire.
- AVC-8: il cavo si sviluppa per otto spire.

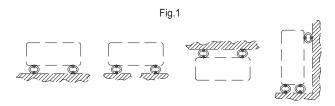
CARATTERISTICHE E APPLICAZIONI

Gli antivibranti a cavo AVC sono composti da due coppie di barre, unite tra loro da un cavo con avvolgimento elicoidale (spira).

Sono generalmente utilizzati per l'isolamento delle vibrazioni e l'assorbimento degli urti, dove viene richiesta resistenza a trazione, compressione e forza di taglio.

Com'è noto le vibrazioni possono provocare:

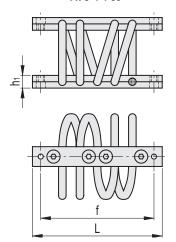
- cattivo funzionamento e riduzione della vita utile della macchina stessa e/o di quelle ad essa adiacenti;
- danni per la salute dell'uomo;
- rumore.


Risultano essere particolarmente adatti per impiego con HVAC, pompe, impianti di depurazione e desalinizzazione, pannelli di strumentazione, ferroviario, navale e militare. Alcuni esempi di applicazione sono schematizzati in Fig.1.

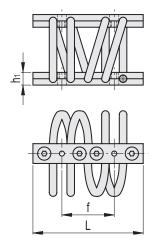
Vedi Antivibranti ad elevate prestazioni - Caratteristiche e criteri per la scelta (a pag. -).

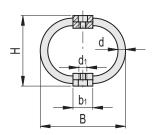
- Antivibranti a cavo con barre in acciaio INOX AISI 304.
- Antivibranti a cavo con barre in alluminio con passivazione cromica.

	F	Resisten	za a compres	ssione		Resis	tenza a trazio	one	Resistenza a taglio					
Descrizione	min.	max.	Deflessione min.	max.	min.	max.	min.	Deflessione max.	min.	max.	Deflessione min.	max.		
	[N]	[N]	[mm]	[mm]	[N]	[N]	[mm]	[mm]	[N]	[N]	[mm]	[mm]		
AVC-4-4-53	50	110	2	5	50	110	1	3	20	40	5	10		
AVC-4-6-61	70	140	2	7	70	140	3	6	30	70	5	13		
AVC-4-6-93	80	180	2	9	80	180	2	8	30	90	5	17		
AVC-4-7-110	200	300	2	4	200	300	2	3	70	150	3	7		
AVC-4-10-80	200	450	2	6	200	450	2	5	100	230	3	11		
AVC-4-10-108	300	630	2	7	300	630	2	6	150	300	5	14		
AVC-4-13-102	600	1000	2	4	600	1000	2	3	300	600	3	8		
AVC-6-7-82	850	1500	2	5	850	1500	1	3	400	900	4	11		
AVC-6-8-67	850	1500	4	11	850	1500	4	11	300	800	6	21		
AVC-6-10-80	1500	2500	2	5	1500	2500	1	3	750	1400	5	11		
AVC-6-13-135	1000	2500	2	8	1000	2500	2	5	500	1000	5	13		
AVC-8-13-120	1500	3000	4	11	1500	3000	3	7	600	1500	7	19		


Il carico min è il valore sotto il quale l'antivibrante non è in grado di isolare le vibrazioni in quanto risulterebbe troppo rigido. Il carico max è il valore oltre il quale può aver luogo qualche tipo di cedimento tale da compromettere la funzionalità dell'antivibrante. La deflessione min è lo schiacciamento del supporto antivibrante corrispondente al carico min.

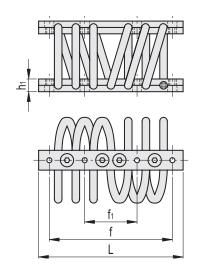
La deflessione max è lo schiacciamento del supporto antivibrante corrispondente al carico max.

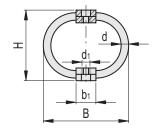




AVC-4-4-53

AVC-4-6-61....AVC-4-13-102

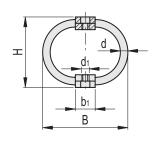



AVC-4

NOX	STAINLESS STEEL
-----	--------------------

Codice	Descrizione	В	L	Н	d	d1	b1	h1	f	4
480001	AVC-4-4-53	53 ±3	71	45 ±3	4	M6	15	8	61	180
480003	AVC-4-6-61	61 ±3	91	51 ±3	6	M6	15	12	46	500
480005	AVC-4-6-93	90 ±4	91	65 ±4	6	M6	15	12	46	370
480007	AVC-4-7-110	110 ±4	91	79 ±4	7	M6	15	12	46	420
480009	AVC-4-10-80	80 ±4	155	68 ±4	10	M8	25	16	83	870
480011	AVC-4-10-108	108 ±4	155	89 ±4	10	M8	25	16	83	1430
480013	AVC-4-13-102	101 ±4	155	80 ±4	13	M8	25	20	83	2610

AVC-6


AVC-6

VOL	STAINLESS
NUA	STEEL

Codice	Descrizione	В	L	Н	d	d1	b1	h1	f	f1	7,7
480021	AVC-6-7-82	82 ±4	200	60 ±4	7	M6	15	12	66	155	1280
480023	AVC-6-8-67	67 ±4	200	53 ±4	8	M6	15	12	66	155	1760
480025	AVC-6-10-80	80 ±4	169	68 ±4	10	M6	25	16	66	155	1490
480027	AVC-6-13-135	135 ±5	178	110 ±5	13	M8	25	20	66,6	155,5	870

AVC-8

AVC-8										IN	OX STAINLESS STEEL
Codice	Descrizione	В	L	Н	d	d1	b1	h1	f	f1	Δ'Δ
480029	AVC-8-13-120	118 ±4	222	95 ±4	13	M6	25	20	66	155	3040

Antivibranti a molla

Gomma e acciaio

CORPO E RIVESTIMENTO ANTISCIVOLO

Gomma NBR.

Durezza 60 Shore A ±5.

MOLLA E PIASTRA

Acciaio zincato.

TAPPI MOLLA

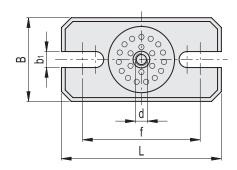
Alluminio.

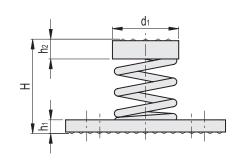
CARATTERISTICHE E APPLICAZIONI

Gli antivibranti AVM sono composti da un corpo e da un rivestimento antiscivolo fissato alla parte inferiore con una vite in acciaio zincato, e una molla su cui vengono avvitati due tappi con foro passante filettato alle estremità.

Sono generalmente utilizzati per l'isolamento delle vibrazioni in compressione.

Com'è noto le vibrazioni possono provocare:


- cattivo funzionamento e riduzione della vita utile della macchina stessa e/o di quelle ad essa adiacenti;
- danni per la salute dell'uomo;
- rumore.


Risultano essere particolarmente adatti per impiego con HVAC, compressori, gruppi di refrigerazione, centrifughe, frantoi, vibrovagli, gruppi elettrogeni.

ESECUZIONI SPECIALI A RICHIESTA

- Antivibranti a molla semplice con perni o fori filettati senza piastra alla base.
- Antivibranti a molla con due piastre.
- Antivibranti a molla con una o due piastre e perni per il trasporto.

Codice	Descrizione	В	L	Н	d	d1	b1	h1	h2	f±5*	Carico min. [N]	Carico max. [N]	Deflessione min. [mm]	Deflessione max. [mm]	
480121	AVM-50-13	55	105	62	M8	43.5	10.5	9	13	75	50	130	5	15	360
480123	AVM-50-25	55	105	62	M8	43.5	10.5	9	13	75	80	250	5	15	370
480125	AVM-50-35	55	105	62	M8	43.5	10.5	9	13	75	120	350	5	15	380
480127	AVM-50-50	55	105	62	M8	43.5	10.5	9	13	75	180	500	5	15	400
480129	AVM-50-80	55	105	62	M8	43.5	10.5	9	13	75	270	800	5	15	380
480131	AVM-50-115	55	105	62	M8	43.5	10.5	9	13	75	400	1150	5	15	430
480133	AVM-50-135	55	105	62	M8	43.5	10.5	9	13	75	450	1350	5	15	420
480135	AVM-50-155	55	105	62	M8	43.5	10.5	9	13	75	600	1550	5	13	450
480137	AVM-50-200	55	105	62	M8	48	10.5	9	18	75	850	2000	5	12	470
480141	AVM-80-15	55	105	92	M8	43.5	10.5	9	13	75	80	150	10	20	360
480143	AVM-80-35	55	105	92	M8	43.5	10.5	9	13	75	150	350	10	20	370
480145	AVM-80-55	55	105	92	M8	43.5	10.5	9	13	75	270	550	10	20	380
480147	AVM-80-80	55	105	92	M8	43.5	10.5	9	13	75	400	800	10	20	400
480149	AVM-80-100	55	105	92	M8	43.5	10.5	9	13	75	500	1000	10	20	490
480151	AVM-80-140	55	105	92	M8	43.5	10.5	9	13	75	700	1400	10	20	450
480153	AVM-80-175	55	105	92	M8	43.5	10.5	9	13	75	900	1750	10	20	490
480155	AVM-80-215	55	105	92	M8	48	10.5	9	18	75	1050	2150	10	20	530
480157	AVM-80-350	55	105	92	M8	48	10.5	9	18	75	1750	3500	10	20	610
480159	AVM-80-510	55	105	92	M8	48	10.5	9	18	75	3400	5100	10	15	650

^{*} Interasse fori di fissaggio.

La deflessione max è lo schiacciamento del supporto antivibrante corrispondente al carico max.

Il carico min è il valore sotto il quale l'antivibrante non è in grado di isolare le vibrazioni in quanto risulterebbe troppo rigido.

Il carico max è il valore oltre il quale può aver luogo qualche tipo di cedimento tale da compromettere la funzionalità dell'antivibrante.

La deflessione min è lo schiacciamento del supporto antivibrante corrispondente al carico min.

Antivibranti con flangia

a doppio effetto, gomma, alluminio e acciaio

CORPO FLANGIA

Alluminio verniciato in colore blu NITROVER RAL 5010.

BOCCOLA FILETTATA

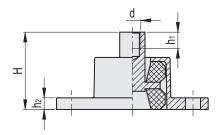
Acciaio verniciato in colore nero.

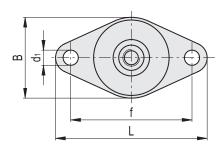
CORPO ANTIVIBRANTE

Gomma NBR.

Durezze 30, 50 e 60 Shore A ±5.

CARATTERISTICHE E APPLICAZIONI


Sono generalmente utilizzati per l'isolamento delle vibrazioni di elevata entità, dove viene richiesta resistenza a trazione e a compressione. Com'è noto le vibrazioni possono provocare:


- cattivo funzionamento e riduzione della vita utile della macchina stessa e/o di quelle ad essa adiacenti;
- danni per la salute dell'uomo;
- rumore.

Risultano essere particolarmente adatti per impiego con macchine utensili, presse per lo stampaggio di materiali plastici, macchine speciali

Vedi Antivibranti ad elevate prestazioni - Caratteristiche e criteri per la scelta (a pag. -).

Codice	Descrizione	В	L	Н	d	d1	h1	h2	f	Carico min. [N]	Carico max. [N]	Deflessione min. [mm]	Deflessione max. [mm]	Shore A	44
480181	AVG-30	80	150	75	M16	15	16	10	120	700	2700	3	6.5	30	650
480183	AVG-50	80	150	75	M16	15	16	10	120	1200	4500	3	6.5	50	650
480185	AVG-60	80	150	75	M16	15	16	10	120	1400	6000	3	6.5	60	650

Il carico min è il valore sotto il quale l'antivibrante non è in grado di isolare le vibrazioni in quanto risulterebbe troppo rigido.

Il carico max è il valore oltre il quale può aver luogo qualche tipo di cedimento tale da compromettere la funzionalità dell'antivibrante.

La deflessione min è lo schiacciamento del supporto antivibrante corrispondente al carico min.

La deflessione max è lo schiacciamento del supporto antivibrante corrispondente al carico max.

Cuscini antivibranti

Acciaio INOX

MAGLIA

Acciaio INOX AISI 304.

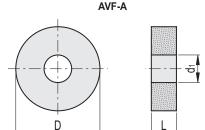
ESECUZIONI STANDARD

- AVF-A: foro passante liscio.
- AVF-SH: foro passante liscio per viti a testa svasata.

CARATTERISTICHE E APPLICAZIONI

Sono generalmente utilizzati per l'isolamento delle vibrazioni in compressione.

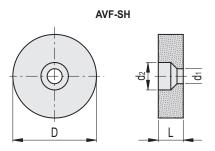
Com'è noto le vibrazioni possono provocare:


- cattivo funzionamento e riduzione della vita utile della macchina stessa e/o di quelle ad essa adiacenti;
- danni per la salute dell'uomo;
- rumore.

Risultano essere particolarmente adatti per l'impiego con propulsori, apparecchiature elettromeccaniche, refrigeranti industriali, supporto tubazioni, pavimenti e pannellature carrozze dei treni.

Vedi Antivibranti ad elevate prestazioni - Caratteristiche e criteri per la scelta (a pag. 2).

AVF-A



Codice	Descrizione	D ±4	L ±4	d1 ±4	Carico min. [N]	Carico max. [N]	Deflessione min. [mm]	Deflessione max. [mm]	2,2
480071	AVF-42-10-100-A-16	42	10	16	300	1000	3	4	30
480051	AVF-42-30-100-A-16	42	30	16	300	1000	8	12	60
480073	AVF-42-10-250-A-16	42	10	16	300	2500	2	3	50
480053	AVF-42-20-250-A-16	42	20	16	300	2500	4	7	60
480075	AVF-67-10-800-A-40	67	10	40	1200	8000	2	3	70
480055	AVF-67-20-800-A-40	67	20	40	1200	8000	3	5	140
480077	AVF-67-10-2000-A-30	67	10	30	3000	20000	2	3	80
480057	AVF-67-22-2000-A-30	67	22	30	3000	20000	5	8	190
480079	AVF-98-12-4000-A-39	98	12	39	4000	40000	3	5	200
480059	AVF-98-26-4000-A-39	98	26	39	4000	40000	6	9	410
480081	AVF-150-15-6500-A-49	150	15	49	8000	65000	7	9	590
480061	AVF-150-30-6500-A-49	150	30	49	8000	65000	8	11	950
480083	AVF-183-15-9300-A-68	183	15	68	10000	93000	7	9	770
480063	AVF-183-32-9300-A-68	183	32	68	10000	93000	9	13	1380
480065	AVF-225-35-15000-A-46	225	35	46	20000	150000	12	16	2450

Il carico min è il valore sotto il quale l'antivibrante non è in grado di isolare le vibrazioni in quanto risulterebbe troppo rigido.
Il carico max è il valore oltre il quale può aver luogo qualche tipo di cedimento tale da compromettere la funzionalità dell'antivibrante.
La deflessione min è lo schiacciamento del supporto antivibrante corrispondente al carico min.
La deflessione max è lo schiacciamento del supporto antivibrante corrispondente al carico max.

AVF-SH

Codice	Descrizione	D ±4	L ±4	d1 ±4	d2 ±4	Carico min. [N]	Carico max. [N]	Deflessione min. [mm]	Deflessione max. [mm]	47
480091	AVF-42-30-100-SH-10	42	30	10	16	300	1000	6	10	60
480093	AVF-42-20-250-SH-10	42	20	10	16	300	2500	2	6	60
480095	AVF-67-20-800-SH-12	67	20	12	20	1200	8000	4	7	150
480097	AVF-67-22-2000-SH-12	67	22	12	20	3000	20000	5	8	150
480099	AVF-98-26-4000-SH-16	98	26	16	30	4000	40000	7	10	300

Il carico min è il valore sotto il quale l'antivibrante non è in grado di isolare le vibrazioni in quanto risulterebbe troppo rigido.

Il carico max è il valore oltre il quale può aver luogo qualche tipo di cedimento tale da compromettere la funzionalità dell'antivibrante.

La deflessione min è lo schiacciamento del supporto antivibrante corrispondente al carico min.

La deflessione max è lo schiacciamento del supporto antivibrante corrispondente al carico max.

ELESA. Sempre di più...

ELESA S.p.A. Via Pompei, 29 20900 Monza (MB) Italy phone +39 039 2811.1 fax +39 039 836351 info@elesa.com

elesa.com